Title of Dissertation: A THREE DEGREE OF FREEDOM PARALLEL MANIPULATOR WITH ONLY TRANSLATIONAL DEGREES OF FREEDOM
نویسندگان
چکیده
Title of Dissertation: A THREE DEGREE OF FREEDOM PARALLEL MANIPULATOR WITH ONLY TRANSLATIONAL DEGREES OF FREEDOM Richard Eugene Stamper, Doctor of Philosophy, 1997 Dissertation directed by: Professor Lung-Wen Tsai Department of Mechanical Engineering and Institute for Systems Research In this dissertation, a novel parallel manipulator is investigated. The manipulator has three degrees of freedom and the moving platform is constrained to only translational motion. The main advantages of this parallel manipulator are that all of the actuators can be attached directly to the base, closed-form solutions are available for the forward kinematics, the moving platform maintains the same orientation throughout the entire workspace, and it can be constructed with only revolute joints. Closed-form solutions for both the forward and inverse kinematics problems are presented. It is shown that the inverse kinematics problem has up to four real solutions, and the forward kinematics problem has up to 16 real solutions. The Jacobian matrix for the manipulator is also developed, and used to identify singular poses of the manipulator, where the manipulator instantaneously gains or loses a degree of freedom. The manipulator workspace volume as a function of link lengths and leg orientation is determined using the Monte Carlo method. A procedure for characterizing the quality of the workspace is also developed. Using these results, optimization studies for maximum workspace volume and for well-conditioned workspace volume are conducted. The objective function for the well-conditioned optimization study is defined as the integration of the reciprocal of the condition number of the Jacobian matrix over the workspace volume, and named the global condition index. Three different models are developed for the manipulator dynamics, with numerical simulations presented for all three models. The first model is based upon the application of the Newton-Euler equations of motion used in conjunction with the Jacobian matrix to map the inertial and gravitational loadings of the moving platform to the actuators. The second model was developed to give a more complete characterization of the dynamics, and is based upon the Lagrangian multiplier approach. The third model neglects the highly coupled nature of the manipulator and models each input link individually. This model is developed for use with single-input single-output type controllers. A prototype was fabricated to demonstrate this manipulator. Three controllers are developed and tested on the prototype, where each type of control tested relied on different characterizations of the manipulator dynamics. The three controllers are a PID controller, a computed torque controller, and an iterative learning controller. The research presented in this dissertation establishes this parallel manipulator as a viable robotic device for three degree of freedom manipulation. The manipulator offers the advantages associated with other parallel manipulators, such as light weight construction; while avoiding some of the traditional disadvantages of parallel manipulators such as the extensive use of spherical joints and coupling of the platform orientation and position. A THREE DEGREE OF FREEDOM PARALLEL MANIPULATOR WITH ONLY TRANSLATIONAL DEGREES OF FREEDOM
منابع مشابه
Dexterous Workspace Shape and Size Optimization of Tricept Parallel Manipulator
This work intends to deal with the optimal kinematic synthesis problem of Tricept parallel manipulator. Observing that cuboid workspaces are desirable for most machines, we use the concept of effective inscribed cuboid workspace, which reflects requirements on the workspace shape, volume and quality, simultaneously. The effectiveness of a workspace is characterized by the dexterity of the manip...
متن کاملKinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach
In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...
متن کاملKinematic Synthesis of Parallel Manipulator via Neural Network Approach
In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...
متن کاملDesign and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator
This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...
متن کاملUsing the Matrix Method to Compute the Degrees of Freedom of Mechanisms
In this paper, some definitions and traditional formulas for calculating the mobility of mechanisms are represented, e.g. Grubler formula, Somov - Malyshev formula, and Buchsbaum - Freudenstei. It is discussed that there are certain cases in which they are too ambiguous and incorrect to use. However, a matrix method is suggested based on the rank of the Jacobian of the mechanism and its applica...
متن کامل